
Using Handheld Devices in Synchronous

Collaborative Scenarios

Jörg Roth and Claus Unger

University of Hagen, Department of Computer Science, Hagen, Germany

Abstract: In this paper we present a platform specially designed for groupware applications running on handheld devices. Common
groupware platforms request desktop computers as underlying hardware platforms. The fundamentally different nature of handheld devices
has a great impact on the platform, e.g. resource limitations have to be considered, the network is slow and unstable. Often, personal data
are stored on handheld devices, thus mechanisms have to ensure privacy. These considerations led to the QuickStep platform. Sample
applications developed with QuickStep demonstrate the strengths of the QuickStep environment.

Keywords: Handheld computing; Synchronous collaboration

1. Introduction

Collaborative applications help a group to, for
example, collaboratively create documents, write
agendas or schedule appointments. A common
taxonomy [1] classifies collaborative applications
by time and space, with ‘‘same place’’ and
‘‘different places’’ attributes on the space axis
and ‘‘same time’’ (synchronous) and ‘‘different
time’’ (asynchronous) ones on the time axis.
Synchronous groupware supports real-time group
activities, i.e. events are distributed to group
members without considerable delay. In contrast,
asynchronous activities may happen at different
times.

To develop groupware, especially synchronous
groupware, is a difficult and time-consuming
task. Usually, groupware is not developed ‘‘from
scratch’’, but with the help of a groupware
toolkit. In this paper, we introduce a groupware
platform for synchronous collaborative applica-
tions with handheld devices. Our approach
assumes that group members operate in a close
neighbourhood, i.e. long distance connections
between users are not supported.

Although several groupware toolkits are
available already, they can hardly be adapted
to handheld devices. Straightforward ap-
proaches, such as simply cross-compiling exist-
ing applications, fail owing to the specific
properties of handheld devices and the con-
necting network:

. Handheld devices have low computational
power, small memory and usually no mass
storage devices (e.g. hard disks).

. Handheld operating systems (e.g. PalmOS [2],
Windows CE [3], EPOC [4]), do not offer the
same variety of services as desktop operating
systems. PalmOS, for example, does not
support threads or processes for background
tasks, a common technique for desktop
computer applications.

. Handheld applications follow a different usage
paradigm: they are designed for a small
display, have to provide short start-up and
response times and are developed for gather-
ing and presenting small pieces of information
rather than processing large amounts of data.

. Network connections to handhelds have low
bandwidths and are very unstable.

The notions of handheld device, palmtop, PDA
and organiser are often interpreted in different
ways. One (older) interpretation distinguishes
between pen-based devices and palmtops, where
the latter have keyboards. In contrast, Microsoft
divides Windows CE devices into handheld PCs
(H/PC) with a keyboard, palmsize PCs (P/PC)
which are controlled by a pen, and handheld PC
Pro devices, which are subnotebooks [3]. In the
following, we understand by handheld devices
pen-based devices with small displays (e.g. 1606
160 pixels). Popular examples for such devices are
3Com’s Palm III and Casio’s Cassiopeia.

243

Springer-Verlag London Ltd
Personal and Ubiquitous Computing (2001) 5:243–252

2. Collaboration in Mobile
Environments

Collaborative applications significantly differ
from single-user applications. Many users provide
input (often simultaneously), output has to be
processed for many users and shared data have to
be kept consistent. Groupware applications have
to provide a kind of ‘‘group feeling’’, called
collaboration awareness: users have to be aware
of other users involved in the collaborative task.
Collaboration awareness is provided by elements
inside the application called awareness widgets.

A similar concept applies to the mobility
aspect of handheld devices. Mobile devices can
be connected to a network at different places.
Depending on the location, different informa-
tion is available. Users should be aware of their
current location, including the geographic loca-
tion as well as the location in the network, i.e.
the actual domain. This kind of awareness is
called ‘‘context awareness’’.

We call an application ‘‘aware’’ if it explicitly
takes care of a special situation, otherwise we call
it ‘‘transparent’’. Collaboration-aware applica-
tions are especially designed to support a group,
i.e. they contain special code for group functions.
Collaboration-transparent applications are origi-
nal single-user applications which, with the help
of a group toolkit, can be used by many users
simultaneously. Collaboration-transparent appli-
cations do not offer awareness widgets. A similar
notion can be applied to the mobility aspect:
mobility-aware applications contain code to
handle mobility, e.g. react on unstable network
connections and changing network locations.
Mobility-transparent applications cannot handle
such problems explicitly, but rely on an under-
lying platform.

The QuickStep platform is designed to
develop both collaboration-aware and mobility-
aware applications. It provides awareness widgets
for collaboration awareness as well as for context
awareness. Before we describe the QuickStep
approach, related work is presented.

3. Related Work

Collaborative as well as mobile applications have
to keep data consistent. Applications that are
collaborative and mobile at the same time
double the problem of data consistency. Colla-
borative applications have to synchronise con-

current data manipulations; mobile applications
have to keep data consistent when devices are
moved inside the network or are disconnected
from the network.

Several toolkits have been developed to
address the problem of data distribution in
mobile environments. Coda [5] provides a
distributed file system similar to NFS, but
allows disconnected operations. Applications
based on Coda are fully mobility-transparent,
i.e. run inside a mobile environment without any
modification. Disconnected mobile nodes have
access to remote files via a cache. Operations on
files are logged and automatically applied to the
server when the client reconnects. Coda applica-
tions can either themselves define mechanisms
for detecting and resolving conflicts or ask the
user in case of conflicts. A follow-on platform,
Odyssey [6], extends data distribution to multi-
media data such as video or audio data. To
support real-time data, bandwidths and available
resources have to be monitored. Odyssey appli-
cations are mobility aware.

Rover [7] supports mobility-transparent as
well as mobility-aware applications. To run
without modification, network-based applica-
tions such as Web browsers and News readers
can use network proxies. The development of
mobility-aware applications is supported by two
mechanisms: relocated dynamic objects (RDOs)
and queued remote procedure calls (QRPC).
RDOs contain mobile code and data and can
reside on a server as well as on a mobile node.
During disconnection, QRPCs are applied to
cached RDOs. As in Coda, operations are logged
and applied to server data after reconnecting.

Bayou [8] provides data distribution with the
help of a number of servers, thus segmented
networks can be handled. In contrast to Coda,
replicated records are still accessible, even when
conflicts have been detected but not resolved.
Bayou applications have to provide a conflict
detection and resolution mechanism; thus no
user intervention is necessary. Bayou is not
designed to support real-time applications.

Sync [9] allows asynchronous collaboration
between mobile users. Sync provides a collabora-
tion based on shared objects which can be
derived from a Java library. As in Bayou, data
conflicts are handled by the application. Sync
applications have to provide a merge matrix,
which contains a resulting operation for each
pair of possible conflicting operations. With the

244

J. Roth and C. Unger

help of the merge matrix, conflicts can be
resolved automatically.

Lotus Notes [10] has not primarily been
designed for mobile computers, but allows
replicated data management in heterogeneous
networks. Nodes can be disconnected and merge
their data after reconnection. Data in Lotus
Notes have a record structure. Fields may
contain arbitrary data which are transparent to
Notes. Records can be read or changed on
different nodes simultaneously. When recon-
necting, conflicting updates are resolved by users.

With the help of handheld devices, Pebbles
[11] allows the remote control of applications
running on a server. It follows a collaboration-
and mobility-transparent concept. Instead of
using the mouse and keyboard directly, input is
taken from the handheld device’s touchscreen
and handwriting area. From the application’s
view, input comes directly from the server’s
keyboard and mouse respectively. In turn, the
server window output is transferred to handheld
devices. With these mechanisms it is possible to
control remotely off-the-shelve applications (e.g.
MS Word) with handheld devices.

3.1. Discussion

Most of the toolkits above request their mobile
clients to be notebook computers with, e.g. hard
disks. Only Pebbles is designed for handhelds.
The focus of the other platforms is to maintain
data consistency in a weakly connected environ-
ment. Problems related to handheld devices,
such as small memory and reduced computa-
tional power, are not handled satisfactorily.
Automatic conflict detection and resolution
need a considerable amount of resources on the
handheld devices. We believe that such mechan-
isms are (currently) not suitable for handheld
scenarios.

Concepts, such as the Rover toolkit, which
require mobile code and marshalling/unmarshal-
ling mechanisms currently cannot be adapted to
handheld devices, since these are significantly
different from their servers. The concept of
mobile code requires platform independent code
and identical runtime libraries on both plat-
forms. Even though languages such as Java are
running on many platforms, handheld portings
will provide other runtime libraries, thus mobile
code mechanisms will fail.

Looking at typical data types stored in
handheld devices we mostly find well structured

and textual data. Real-time data such as video or
audio data provided by the Odyssey system are
currently inadequate owing to small network
bandwidths, low computational power and re-
duced peripheral equipment of handheld devices.
Even graphical data, such as freehand sketches or
diagrams, are difficult to handle as a result of
inaccurate and inconvenient screen devices.

Data stored inside a handheld device are
usually viewed as private. Even more than
desktop computers, such devices are viewed as
personal [12]. Personal data, e.g. telephone
numbers, birthdays and leisure-time activities,
are stored inside such a device. If a handheld
device is connected to an untrusted network, a
platform has to offer mechanisms to guarantee
privacy of individual data. None of the platforms
above contains such mechanisms.

4. The QuickStep Approach

The QuickStep platform supports developers of
collaboration- and mobility-aware handheld
applications. They can use communication and
collaboration primitives provided by the plat-
form and can concentrate on application-specific
details. A set of predefined awareness widgets
can be integrated into an application with a few
lines of code.

The QuickStep approach can be described as
follows:

. QuickStep supports applications with well-
structured, record-oriented data, as being used
by built-in software for handheld devices (e.g.
for to-do lists, memos, telephone lists). Quick-
Step has explicitly not been designed for
supporting multimedia data, graphical-or-
iented applications or continuous data
streams.

. QuickStep is mainly designed for supporting
synchronous collaboration.

. QuickStep provides awareness widgets for
collaboration awareness as well as context
awareness.

. QuickStep comes along with a generic server
application that allows the support of arbitrary
client applications without modifying or
reconfiguring the server.

. The QuickStep architecture ensures privacy of
individual data.

245

Using Handheld Devices in Synchronous Collaborative ScenariosUsing Handheld Devices in Synchronous Collaborative Scenarios

Before we describe the QuickStep platform itself,
we present a sample application developed with
QuickStep.

4.1. A sample application

Consider a scenario in which members of a
meeting want to schedule appointments for
future meetings. Each member owns a handheld
device, which already contains a list of appoint-
ments as well as entries indicating the time one
is unavailable because of, for example, vacations
or travels. Figure 1 presents an application that
can help to find a date, when all members are
available.

The figure shows two users’ views on their
personal handheld devices. The upper half of
each window displays the days of a month. Each
range of dates when someone is unavailable is
indicated by a bar. To get a better overview, the
view can be switched to a two-month display.
The lower half of the window is the legend for
the upper half.

Both users, Joerg and Stephan, can see their
own and the foreign bar, the latter being labelled
with the user name rather than the local label.
With regard to the foreign bar, only the date
range is of interest, not the reason why someone
is unavailable. Each user can make new entries
that are distributed to the other user in real-time.

With the help of this application it is very easy
to find dates when all members are available.

To develop such an application from scratch,
a developer has to implement many tasks:
communication protocols, for example, have to
be integrated, shared data have to be managed.
The application should offer awareness widgets.
All these services have to be developed in
addition to the main task, the calendar function.
This might overwhelm a developer.

QuickStep helps a developer to concentrate
on the application-specific details; communica-
tion and data primitives as well as predefined
awareness widgets can be used from the platform.
In the following sections, we present the plat-
form in more detail.

4.2. The QuickStep communication
infrastructure

The sample application above requires a com-
munication link between the handhelds. In
principle, the devices could be connected
directly. Unfortunately, the computational
power of handheld devices is currently too low
to handle communication in the background.
Often, handheld operating systems (e.g.
PalmOS) are generally unable to run background
tasks, a prerequisite for handling incoming
communication requests. Thus, we need an
additional computer, which acts as a commu-

246

a) Joerg’s handheld b) Stephan’s handheld

Fig. 1. A collaborative calendar tool.

J. Roth and C. Unger

nication relay between handhelds. This compu-
ter, the QuickStep server, contains a generic
server application which is able to serve arbitrary
QuickStep applications.

Figure 2 shows a typical QuickStep commu-
nication scenario. In various scenarios the
QuickStep approach can be used without setting
up an application-dependent server. The Quick-
Step server can be viewed as ‘‘inventory’’ of a
specific environment, e.g. of a meeting room or
of ‘‘public’’ locations such as trains or public
halls. Once installed, it normally does not have
to be reconfigured or administered. The server
runs without an operator and does not need a
user interface, so can work ‘‘invisibly’’ behind a
panel.

The network connection works either in a
wireless way (e.g. via an infrared or radio
connection) or via serial cables. Wireless com-
munication protocols are, e.g. BlueTooth and
IrDA/IrComm. Typical handheld devices already
provide a serial port and a built-in infrared
transceiver. In addition, a TCP/IP communica-
tion stack is integrated into most handheld
operating systems.

4.3. Group management

Groups of collaborating users are not defined
explicitly in QuickStep. All users connected to a
specific QuickStep server at the same time and
using the same QuickStep application form a
collaborative session. This concept allows a
server to run without defining groups centrally.
It is possible for a user to join a group without
having explicit permission from existing users.
Since a mechanism for making data anonymous
is integrated into the platform, a user cannot spy
out private data (see below).

QuickStep is mainly created to support

synchronous collaboration. In contrast to desk-
top computers, handhelds are not permanently
switched on. During collaboration, the handheld
may be switched off owing to the auto-power-off
mechanism. In addition, handheld network
connections tend to be unstable, thus unwanted
disconnections are possible. Following the strict
definition of synchronous collaboration, any
time a member is disconnected, they would
automatically leave a running session. To over-
come this problem, we introduce the notion
of relaxed synchronous collaboration for group
members who collaborate synchronously, but
may infrequently be disconnected from the
network for short periods of time. Relaxed
synchronous collaboration is placed between
(strict) synchronous and asynchronous colla-
boration. As in asynchronous scenarios, shared
data have to be stored during disconnections, but
data manipulations are happening much more
frequently.

QuickStep does not provide services for
leaving a session. When a user disconnects, the
server first assumes a temporary disconnection.
When a user is disconnected for a longer time
(e.g. an hour), the server removes that user from
the session. The period of time a user has to be
disconnected until a leave operation is per-
formed, is defined by the corsponding applica-
tion.

4.4. Managing data

Usually, data inside handheld devices are well-
structured and record oriented. Common operat-
ing systems for handhelds have built-in services
to store and retrieve data records. PalmOS
supports an entity called database [2] (not to be
confused with the classical database). A palm
database is a persistent collection of records.
Each record has a unique identifier, which allows
its identification, but its content is opaque to the
operating system. Constructing and interpreting
records depends solely on the corresponding
application.

The database is a common programming
abstraction in handheld applications, thus the
ideal abstraction for collaborative applications as
well. QuickStep follows the same paradigm when
collecting and distributing data. The QuickStep
application programming interface (API) has
similar database functions as the handheld
operating systems. An application developer
can use well-known services to handle applica-

247

Fig. 2. A QuickStep communication scenario.

Using Handheld Devices in Synchronous Collaborative ScenariosUsing Handheld Devices in Synchronous Collaborative Scenarios

tion specific data. Data stored in QuickStep
databases are automatically distributed among a
session by the QuickStep platform. Similar to
native database services, the actual content of
records is not of interest for the distribution
mechanism and can only be interpreted by the
application. Especially, the QuickStep server
does not know the record structure.

When planning data distribution, many con-
tradicting requirements have to be taken into
consideration. Many platforms described above
have complex mechanisms to detect and resolve
conflicts caused by concurrent data manipula-
tions. In our opinion, such mechanisms cannot
be used inside handheld devices. Our concept for
solving conflicts is simply to avoid them: it is not
possible to concurrently manipulate data. For
this, each record of data can only be changed by
the handheld device that originally created the
record. Copies residing on other handheld
devices can only be viewed. To modify data
created by another user, a private copy has to be
made, which is treated as a new record.

4.5 Mirroring and caching

The computation power of handhelds and net-
work bandwidths is considerably low compared
with desktop environments. The transfer of
processing tasks to a server would relieve
handheld devices of heavy computation. On
the other hand, it is not possible to transfer large
sets of data between handhelds and a server. To
reduce network traffic and to perform as many
computations as possible on a server, we devel-

oped a combined mirroring and caching me-
chanism. Figure 3 shows the architecture.

The main entities are the following:

. Each handheld has its own local database that
contains the application’s records. Only the
owner can add, change or remove local
records.

. The QuickStep server has a copy of each local
database, the mirror database. The mirror
database is incrementally updated each time a
handheld device is connected to the server.

. To allow viewing data during a disconnection,
a local copy of other users’ mirror database
entries exists on the handhelds, called the
cache database. Since the amount of data of
all mirror databases might be too big for the
handheld, a selector set by the application
reduces the number of cache entries.

. An application accesses the local database and
the cache database via the database proxy.
The proxy provides a similar interface as a
conventional database.

The anonymiser and the lifetime supervisors are
related to privacy mechanisms, which we will
describe later.

The selector can, for example, specify the
range of days the calendar tool currently displays
or a category label in a memo tool. With the
help of the selector, only records are loaded and
updated which are currently displayed. This
approach results in a dilemma: on the one
hand the set of records that match a specific
selector should be computed by the server, not by
the handhelds; on the other, the selector may be
highly application-dependent, i.e. hardly to be
handled by a generic server.

To address this problem, we identified two
selector types that match most applications: the
number range selector and the string match
selector. Both selector types are predefined in the
QuickStep server. The number range selector
can be used for all kinds of records which are
ordered by a numeric value. A good example are
date entries in the calendar tool presented above.
To each entry, a number can be assigned, e.g. the
day index. An entry matches a specific number
range selector, if the corresponding index is
within the selected range. In the calendar
application, the current view is defined by a
range (from date...to date). This range is sent to
the server, which in turn sends only records
that are within this range. The string match

248

Fig. 3. The QuickStep architecture.

J. Roth and C. Unger

selector is used to match records that have a
string value attached. This value has not to be
unique inside the database. The string match
selector can be used to select all memos of a
specific category.

To maintain consistency of the mirror
database, a logging mechanism is included into
the platform. Every local record in the database
has a unique identifier that can be used to
identify records in the server’s mirror database.
When the application removes, adds or changes
a record, the corresponding change is logged
locally. Whenever the handheld is reconnected
to the QuickStep server, the changes are
transferred to the server, which updates the
corresponding mirror database. Applying
changes incrementally ensures that the amount
of transferred data is low, even when the
handheld database has many entries.

4.6. Private data

For users, privacy is an important requirement.
We decided not to transfer any private data
across the network. For this, every record can be
marked as private (the default value). Private
records reside only in the handheld and will not
be transferred under any circumstances.

Non-private records are not transferred until
an anonymising process relieves them from
personal fields. Since the record structure is
opaque to the underlying system, the anonymis-
ing function has to be provided by the applica-
tion. In the calendar application, for example,
the anonymising function blanks out the labels
of appointments and transfers the dates only.

As an additional concept, each record has a
‘‘time to live’’ entry, after which a record is
deleted automatically from the QuickStep server
and other handheld devices. This approach
guarantees a user that their data are not available
for ever on other computers (even in anony-
mised form). The time to live entry can be either
session, min, hour, day, or forever. If the value is
session, the corresponding record will be im-
mediately removed from the server and handheld
caches when the corresponding handheld is
disconnected. The other values indicate the
time a record will reside after disconnection. The
lifetime is controlled by lifetime supervisors (see
Fig. 3) that exist on the handheld devices and on
the QuickStep server.

4.7. Context and group awareness

A user who collaborates with the help of the
QuickStep platform wants to know about the
context in which they are currently working. For
this, a QuickStep application can integrate a
‘‘context’’ button with opens a frame as pre-
sented in Fig. 4.

The context frame is the central instance for
all context-related information:

. What is the current connection state (con-
nected or disconnected)?

. To which server is the handheld currently
connected (server name, organisation)?

. Where is the server located?

. Who can be called in case of problems (e.g.
network failures)?

. Which users currently form the session and
what are their connection states?

Except for the user list, the context information
is fixed and has to be configured once when
setting up a QuickStep server. The user list is
automatically computed and constantly updated.

The context information is important when a
user enters an unknown location. Consider a
scenario where a huge building is equipped with
a number of QuickStep servers (e.g. one per
floor). Each QuickStep server provides informa-
tion about the current location and thus can be
used as a beacon for navigating inside the
building.

For collaborating users, the connection state

249

Fig. 4. The context frame.

Using Handheld Devices in Synchronous Collaborative ScenariosUsing Handheld Devices in Synchronous Collaborative Scenarios

is very important. If a user is disconnected, all
changes applied to data cannot be viewed by
other users. Thus, information about the con-
nection state should be available on the main
window of an application. We designed an
integrated button and state indicator (see Fig.
1, lower right button). This widget allows the
connection and disconnection to a QuickStep
server and indicates the current state with the
help of a small icon.

States can be:

. Disconnected: the button allows reconnec-
tion.

. Connected: the button allows disconnection.

. All members of a session are connected: this
means that all data that can be viewed are up
to date. As in the connection state, the button
allows disconnection.

. Error: the QuickStep platform is in an
unexpected state, e.g. because of a corrupted
local database. Neither connection nor dis-
connection is allowed.

Both the button/state indicator and the context
frame are predefined awareness widgets and can
be integrated in an application with the help of
the QuickStep library. In addition, an applica-
tion can retrieve state and context information
via the QuickStep API and can react on events
(e.g. joining a session or disconnecting from a
network), thus helping an application developer
to create their own awareness widgets.

4.8. Realisation aspects

When realising QuickStep, we decided to use the
programming language Java. The QuickStep
platform consists of two parts, the QuickStep
server application and the handheld platform.
We developed the server application with Sun’s
Java Development Kit for desktop computers.

For handheld devices, especially for PalmOS,
three Java platforms for handhelds are currently
available: KVM (http://java.sun.com/products/
kvm/), Spotless (http:// www.sun.com/research/
spotless/) and Waba (http://www.wabasoft.com/).
KVM has currently no network APIs and
Spotless tends to be unstable. We decided to
use Waba. Waba provides all services we need,
runs stably, and offers a virtual machine and a
runtime library. To compile Waba applications, a
common Java compiler from any desktop Java
Development Kit can be used. Waba has the

great advantage of supporting both PalmOS
devices as well as Windows CE devices.

Although Waba covers a wide area of classes
and methods, two kinds of services are still
missing. First, Waba does not support threads. As
a work-around, Waba offers so-called timers
which can periodically call a predefined
method. Unfortunately, a method call is only
performed when no other instruction is being
executed. Waba does not support real back-
ground operations.

Another missing service is the server socket.
Waba only allows a socket connection to open to
another server. A handheld device cannot offer a
socket service itself. This affects how commu-
nication is established between two parties. The
handheld device always has to be the initiating
part of a communication. Consequently, it is not
possible to connect two handheld devices with-
out having a server between them.

One further drawback of Waba is that, rather
than using native widgets, all user interface
widgets are re-implemented owing to two
reasons. First, there does not exist a common
set of widgets that is available on all supported
operating system platforms. Thus such a set has
to be provided by Waba. Secondly, PalmOS does
not allow the dynamic creation of native
dialogue widgets, the usual way dialogues are
created in Java. Since all widgets are handled by
Waba, they cost a considerable amount of
valuable object memory. In addition, they react
slightly differently compared to the native
PalmOS widgets.

An important problem with Waba is the
memory usage under PalmOS. The memory
allocation mechanism of PalmOS restricts the
entire object heap to 64k, even if the handheld
device has a total of 2MB of RAM. Since Waba
makes heavy usage of dynamic memory, it is
currently not possible to develop bigger applica-
tions with Waba.

4.9. More examples

In addition to the calendar tool, we developed
several applications to verify and improve the
QuickStep platform. We now briefly describe
two of them.

The brainstorming tool (Fig. 5a) allows ideas
to be added to a collaborative list. An idea is
presented by a short description, usually one line
of text. All collected ideas are presented in a
scrollable list box.

250

J. Roth and C. Unger

Usually, data of collaborative applications are
dynamic. The business card collector (Fig. 5b)
has a completely different character. A personal
business card is typically stored once and never
changed. When one enters a public location, e.g.
a conference, the application presents a list of all
other users who published their business cards. A
user can view these cards and collect interesting
cards in a persistent area.

5. Conclusion and Future Work

The QuickStep approach allows the develop-
ment of mobility- and collaboration-aware ap-
plications and has been especially designed for
handheld devices. A generic QuickStep server
relieves the handheld devices from heavy tasks
and stores data during disconnection. The
QuickStep server operates without human inter-
vention and can serve arbitrary QuickStep
applications without modification. A server
offers contextual information, which can be
used by handheld applications.

Data distribution is handled by a caching and
mirroring mechanism. Since data are copied
across an untrusted network and stored on other
handheld devices, mechanisms to ensure privacy
are very important. We strongly believe that a
platform can only gain acceptance if users are

convinced that their personal data are kept
private.

The QuickStep platform is implemented on a
Java for handhelds and fully operable on Palm
and Windows CE devices. However, more
complex applications have memory problems,
and therefore we are currently working on a
porting for the PalmOS platform in C.

References

1. Ellis CA, Gibbs S J, Rein GL. Groupware – some issues
and experiences. Communications of the ACM 1991; 34:
39–58

2. Bey C, Freeman E, Mulder D, Ostrem J. Palm OS SDK
Reference. 3Com, January 2000 http://www.palm.com/
devzone/index.html

3. Boling D. Programming Windows CE. Microsoft Press,
1998

4. Tasker M, Dixon J, Shackman M, Richardson T, Forrest
J. Professional symbian programming: mobile solutions
on the EPOC platform. Wrox Press, 2000

5. Kistler JJ, Satyanarayana M. Disconnected operation in
the coda file system. ACM Transactions on Computer
Systems 1992; 10: 3–25

6. Noble B, Satyanarayanan M, Narayanan D, Tilton JE,
Flinn J, Walker K. Agile application-aware adaptation
for mobility. In: Proceedings of the 16th ACM
Symposium on Operating System Principles, 1997

7. Joseph AD, Tauber JA, Kaashoek MF. Mobile computing
with the Rover Toolkit. IEEE Transactions on Compu-
ters 1997; 46: 337–352

8. Terry DB, Theimer MM, Petersen K, Demers AJ.
Managing update conflict in Bayou, a weakly connected
replicated storage system. In: Proceedings of the 15th
ACM Symposium on Operating Systems Principles,
1995; 172–182

251

Fig. 5. More QuickStep sample applications.

a) The brainstorming tool b) The business card collector

Using Handheld Devices in Synchronous Collaborative ScenariosUsing Handheld Devices in Synchronous Collaborative Scenarios

9. Munson JP, Dewan P. Sync: a Java framework for mobile
collaborative applications. IEEE Computer 1997; special
issue on Executable content in Java: 59–66

10. Lotus Development Corporation. Lotus Notes. *http://
www.lotus.com/home.nsf/welcome/lotusnotes

11. Myers BA, Stiel H, Gargiulo R. Collaboration using
multiple PDAs connected to a PC. In: Proceedings of the
ACM 1998 Conference on Computer Supported Co-
operative Work, 1998: 285–294

12. Stabell-KulØ T, Dillema F, Fallmyr T. The open-end
argument for private computing. In: Proceedings of the
First International Symposium on Handheld and
Ubiquitous Computing, 1999; 124–136

Correspondence to: J. Roth, University of Hagen, Department
of Computer Science, 58084 Hagen, Germany. Email:
Joerg.Roth@Fernuni-hagen.de

252

J. Roth and C. Unger

