
Extracting Wikipedia Data to Enrich Spatial Information

Jörg Roth

Faculty of Computer Science
Nuremberg Institute of Technology

Nuremberg, Germany
Joerg.Roth@th-nuernberg.de

Abstract. Freely available geo data allow a developer to create new types of
remarkable services related to the user's location. Even though current geo data
sources have a high coverage and quality, they do not contain all information
required by new services. This is because geo data sources usually focus on
object geometries and object types. Important information is often missing. As
an example: city entries mainly contain the city name and border, but not the
name of mayor, amount of taxes, year of foundation, number of districts etc.
These data are available in online encyclopediae such as Wikipedia, but there is
no obvious approach to relate both sources. Our objective was thus to create an
automatic import from Wikipedia articles that describe geo objects and extract
all relevant data. To extract processible values we are able to identify property
types such dates, money values, powers, heights, sizes etc. This makes it possi-
ble to use these data for further computation, e.g. to search for maxima, build
averages and sums or to create comparative conditions in queries.

Keywords. Geo Data, Encyclopedic Data, Data Fusion

1 Introduction

Geo data form the foundation for different kinds of new services. Many innovative
services have a relation to locations and are able to identify a user's position, display a
map of friends or compute driving distances. Often, location-based services are sub-
components of social services or community services.

Open Street Map (OSM) is a great source for geo data and enables such services. In
contrast to closed geo services such as Google Maps, Open Street Map applications
cannot only use pre-defined services to display maps – developers are able to create
arbitrary new services as they are able to access the underlying structured geo data.
All geometric information (in particular their vector representation) and non-geomet-
ric information (e.g. names, types, properties and relations to other objects) are avail-
able per object. A service developer can load the freely available geo data and import
it into own formats appropriate for the respective service.

The geo data itself, however, still is incomplete for some services. This is because
OSM data historically was mainly intended for map rendering. Even though con-

tributors can assign properties to every object, many objects mainly contain a name, a
type, and geometry.

Other sources may fill this gap. As the counterpart of OSM for non-geographic
data we may consider Wikipedia: an online encyclopedia and similar to OSM organ-
ized as a community project. Many objects appear in both databases, especially en-
tries about cities, regions and countries, but also about touristic sights. Our main ap-
proach was to identify these data to enrich our geo database. We pursued the follow-
ing goals:

 We want to integrate the short description of geo objects that appear in Wikipedia
into our geo object database.

 We want to take over object properties from Wikipedia to our database. If these
properties have numerical characteristics, we want to transfer the value and unit in
a processible representation. In particular, all numerical values are mapped to a
comparable format that, e.g. abstracts from the physical unit stated the Wikipedia
article (e.g. miles vs. km).

 We want to index all Wikipedia texts that are related to geo objects by a text search
index. Thus, we can use these words in search queries to find objects.

It was in particular not a goal to take vector geometries from Wikipedia. Even though
for some objects such information is available in Wikipedia articles, we rely on the
original OSM source. As a major objective, all these goals must be achieved by
autonomous mechanisms that work without any user intervention. All potential deci-
sions must be formulated as a-priori rules. Once started, the processing of many mil-
lion geo objects must run in a batch manner.

In this paper, we present an import mechanism of encyclopedic data to a geo data-
base inside the HomeRun project.

2 Related Work

We first distinguish knowledge from data. This distinction is not obvious. We here
consider knowledge as collection of higher-level structures about an object, e.g. triples
of subject–predicate–object. In contrast, data are plain values in e.g. columns of a
database table. This means, extracting data follows a more traditional approach of
storing objects in a table-oriented manner. Many projects that deal with Wikipedia as
source try to extract knowledge. YAGO2 [6], e.g., is an ontology-driven project that
extracts many million triples from Wikipedia, also spatial information. In contrast [1]
takes OSM as source and transfers geo object information to a knowledge database.
Even though a knowledge-based approach is more general and flexible, it also has to
deal with the problem to understand value/unit pairs in a processible manner. In this
paper, we only discuss the import of data that, however, can be stored in knowledge
database in later stages.

Our approach deals with two data sources – geo data on the one hand and encyclo-
paedic facts on the other hand. Combining these data can be executed in two direc-
tions: starting from a geo object we look up the corresponding encyclopedia entry or

starting from an encyclopedia entry we may look up the corresponding geo object. As
our goal was to enrich an existing geo database we pursued the first direction. The
geo data source Open Street Map already has a formalized structure [3]. The most
important issue is: how we make use of encyclopedic data from Wikipedia to enrich
existing geo data. This especially means: is there an additional usage scenario for
Wikipedia articles besides presenting articles to people.

Former research deals with similar questions. We can identify two major direc-
tions: access and semantic analyses. Different former work addresses the problem of
accessing articles [7, 21]. For a longer time, the only programmatic way was to im-
port so called Wikipedia dumps. They contain all articles in the Wikitext format [2]
that forms the basis for rendering articles in HTML. The articles themselves are
structured in XML, whereas also information about the articles are stored, e.g., a clas-
sification and information about creation and modifications. The goal of access plat-
forms was to get an API to load the deep structure of articles, sections, paragraphs and
links to other articles.

Once access to articles is established, the next goal was to conduct a semantic
analysis. Thus, some platforms perform basic pre-computing to simplify such analy-
ses. E.g. the platform presented in [20] derives a list of triples (noun-phrase relation
noun-phrase) for every article. The main goal: classify articles and detect relations
between articles and the respective concepts they describe. Some approaches focus on
relatedness between concepts and try to answer questions such as 'How related are
Cat and Dog?'. This is answered using text mining or analysing links between articles
[7]. In [21] further natural language processing (NLP) techniques are incorporated.
Further work use Wikipedia meta data, in particular the article classification and links
between articles to detect semantic relatedness [4, 9, 10]. In [18] the authors suggest
new types of meta data (typed links and attributes) that should be contributed by arti-
cle authors to support a semantic analysis.

Even though several existing work deals with automatic analyses of Wikipedia arti-
cles, they mainly either focus on the technical access or to create relations between
concepts. Incorporating content into other data repositories is not intended. To try to
access certain properties of entities described in Wikipedia articles and to assign these
values to (geo) objects is a new approach.

3 Incorporating Wikipedia Entries to Geo Objects

The HomeRun project [11] has a long tradition to deal with geo data. HomeRun is a
platform for low-cost development of location-based services (also small scale ser-
vices). It provides a set of basic services, e.g. import of geo data from public sources,
map rendering and route planning. HomeRun also supports mobile devices to execute
applications, even running 'offline', i.e. with all geo data stored on the device.

The main data source currently is Open Street Map, even though the HomeRun
import chain also was able to take geo data from other geo data sources, e.g. from
land survey offices. Merging data with different sources already is an important topic,
as some information is missing or does not have the desired quality. E.g.:

 The OSM positions are only stored in 2D without height information, i.e. only
represent a projection on the Earth's surface. Our import thus adds elevation infor-
mation from NASA [8].

 For redundancy reasons, borders of cities, regions, states etc. are in OSM repre-
sented as an unordered collection of lines (so-called relations). If a border is in-
complete, it is not possible to reconstruct a ring. Thus, we additionally load borders
from another source [5], if borders cannot properly be generated from OSM.

As a next step, we want to add a further source: Wikipedia. This, however, differs in
many aspects from existing work: first, information is not geometric as our other
sources. Second and more important: the content is primarily intended to be read by
users and it is not prepared for further automatic processing.

However, some existing features are encouraging:

 There is a special tag in the OSM object structure that indicates the URL to the
corresponding Wikipedia article, if available. Thus, it is not required to 'guess' a
link to an article, e.g. using the object's name.

 Even though an article is like a book or book chapter structured for human readers,
there are some parts that in principle can automatically be read (Fig. 1). Foremost:
for many types of articles there is an infobox that indicates important properties as
pairs of keys and values.

Fig. 1. Example Wikipedia article and important entries to import

 Moreover: there is a common understanding in the community, which properties
are expected for a special type of article – e.g. for cities we have properties such as
Country, Area, Population and Population Density.

 A typical article contains a short description of the specified object. Also, this short
description can be found in the article structure.

We thus have a good chance to automatically read certain content. Our goal was to
pre-process content as much as possible. E.g. if a certain property indicates a numeri-
cal value, we want to be able to use this value for computations and statistical analy-
ses later. Thus, our mechanism must be able to understand different number formats
including physical or other units. Only if numerical interpretation fails, we take the
original text, but then further computation is disabled.

Fig. 2. Stack to access Wikipedia articles

For text mining among our geo data, we additionally add the article's plain text to our
symbio-spatial search engine [16]. This engine allows to formulate complex queries
that contain texts, addresses, object types but also spatial relations (e.g. nearby a
lake). Textual queries currently only use object names and addresses, but we now are
able to extend it to index entire articles. As some of these words may not represent the
actual object, search words from articles get lower priorities compared to object
names – however they significantly improve the search experience.

3.1 Retrieving Articles and Entries

Fig. 2 shows the execution stack to get articles and article entries. The approach is
based on the Wikipedia REST API [19] to get the raw articles' format in Wikitext.
This API also allows writing back edited articles. Thus, it is possible to develop an
own authoring environment to read, edit and write Wikipedia articles without the need
to use the Web-based editing facilities offered by Wikipedia. However, for our ap-
proach, we only need to read articles from Wikipedia.

It would also be possible to load Wikipedia articles directly using HTTP with the
respective URL that is, e.g., a result of a browser search. As all URLs are built in a

straight-forward manner, it is very easy to generate the respective HTTP request. E.g.
to get the HTML-formed article for the city of Nuremberg, the URL is

https://en.wikipedia.org/wiki/Nuremberg

However, the result is formed in HTML, thus underwent an additional step. As
HTML pages both contain the page structure as well as layout definitions, it is more
difficult to get the original article structure. Thus, we decided to use the REST API
that provides the basic article definition. Another benefit: the API allows reading only
a certain section of an article. Thus, entire processing can focus on interesting parts of
the article rather then the entire text. We divide the steps to get desired article entries
as follows (Fig. 2):
Access: These layers are responsible to transfer the actual data from the Wikipedia
server to the requesting client:

 HTTP: The basis forms an HTTP GET request to the Wikipedia server. This re-
quest is always answered, even if a requested article is not available.

 REST: The request is structured according to the REST API. This means, the URL
encodes the requested article, but also some parameters, e.g.

https://en.wikipedia.org/w/api.php
?action=query&titles=Nuremberg
&prop=revisions&rvprop=content

&rvsection=0&format=json

Parsing: These layers read the actual content and structure:

 JSON: The lower layer provides JSON decoding of results. It contains information
about the success of the request. If the request was not successful, JSON variables
contain a description of the problem. In case of success the variable query:
pages contains the requested article section.

 Wikitext: The article structure is then parsed using a Wikitext parser. This is be-
cause of two reasons: first, we need to know the structure to find interesting parts
of the article, e.g. the infobox or the short description. As these parts are not ex-
plicitly indicated in the article document, we need to detect them using structural
information. Second: we need the structure to produce plain texts or to extract
property values in a later stage.

Extraction: The upper layers access entries inside the article and convert them to the
required format:

 Retrieve Entries: Once we know a list of requested entries, we try to detect them in
the article structure. The type of article passed from the Article Requester helps
this component to identify significant entries.

 The loaded entries now undergo a final step that depends on the entry types. Cur-
rently we support plain text, images and pairs of key values with units.

The result entries are now ready to be stored in the geo object's data. In our case of the
HomeRun database, geo objects refer to entries in a properties table that holds all non-
geometric characteristics. Until now, this table only contains properties expressed by
object tags in Open Street Map. Now additional properties of Wikipedia are stored
there.

3.2 Retrieving and Processing Entries

Once the content and structure is parsed, we try to identify interesting entries in the
article. As Wikipedia stores a plenty of different articles with different structures, this
is not trivial. The problem is, even if the layout is obvious for human readers, it is not
obvious for a program to identify, e.g. the short description or infobox. Some exam-
ples of misleading document structures:

 The short description is not necessarily the first text in the article. Sometimes, e.g.,
there is a text declaring an article is a redirect from another article.

 Sometimes the first descriptive text section is about which other articles have a
similar topic. Such a text contains a lot of links to other articles that are meaning-
less in plain texts stored in our database.

 An infobox is usually stored as Wikitext table. However, also the table of content
or some images may appear as table.

As a result, we applied a heuristic approach to identify certain entries in the article. In
this approach we formulate a set of rules that have to be fulfilled in order to get the
right entry in the structure tree. Some examples:

 The short description is a text (not table) that does not contain any file download
link, image or table. In addition some texts must not appear in the description, e.g.
'For other uses…see…'.

 The infobox is either the first, second or last table of the first section with two col-
umns and a set of expected property keywords in the first column (e.g. State,
Population, Postal codes).

Wikipedia authors make use of so-called templates. Templates are building blocks of
Wikitext fragments that provide a basic structuring and layout. To ensure a similar
look of articles, Wikipedia makes heavily use of templates for, e.g. tables of contents,
disambiguation references, maps etc. The Wikipedia API reflects the usage of tem-
plates with two modes to get articles: the requester can either load an article still with
templates or can load an article where all templates are replaced by their respective
Wikitext fragments. The latter case is called expanded mode. Even though, templates
would simplify to find important entries in the article, we decided to use the expanded
mode, because we do not have access to the underlying template definitions and they
may change without prior notice.

Once appropriate entries are detected, a type-dependent conversion is applied. For
plain text entries, all Wikitext tags are removed. As it is also possible for an article
author to embed HTML into Wikitext, we also have to consider HTML tags. If tags

enclose references, they have to be removed. Formatting tags are removed at all. Fi-
nally, a conversion of character sets is applied to get the plain text in the desired en-
coding.

If the desired entry is an image, the image is loaded – usually the embedded images
are represented by an URL and not embedded in Wikitext. In addition, images un-
dergo a technical transformation regarding size, resolution and image format, to meet
the requirements for the later usage (e.g. for a smart phone app or for map rendering).

3.3 Properties of Key/Value/Unit

Original geo objects imported from Open Street Map already contain properties. Even
though Open Street Map allows assigning arbitrary property tags to characterize geo
objects, they typically are used to

 define an object type (e.g. lake, highway, tree);
 define object names (for different purposes);
 control rendering of maps (e.g. tell if an object should not be painted at all);
 provide information for route planning (e.g. speed limits);
 provide additional information to the object's geometry;
 offer additional information about the object, e.g. opening hours, type of restaurant,

parking prices.

Very often, information of the latter case is missing. This is because Open Street Map
mainly is used to draw maps and maybe to support route planning – the origin of
Open Street Map was to collect information about streets. This is also one reason why
classification of geo objects from Open Street Map is very difficult [14].

Wikipedia on the other hand provides a lot of additional information, not stored in
Open Street Map, e.g. population, important people, object classification, organisa-
tion, history, usage or costs. Even though the actual object geometry is exactly de-
fined by OSM, additional geometric information can be read from Wikipedia, e.g.
volumes or surface areas of barrier lakes.

The respective information may be spread over an article, thus not within reach for
automatic processing. Fortunately, infoboxes as shown in Fig. 3 indicate the most
important properties in tables of keys and values.

A major goal is not only to copy the pairs of key/value from the table, but to proc-
ess values in such a way to enable further processing. This means:

 Keys must be mapped to a representation that allows to check for equality.
 Numbers must be transferred from their textual representation to native numbers.
 Units must be recognized and all properties of the same kind have to be mapped to

the same unit in order to be comparable and to create sums of property values. E.g.,
units are converted between Imperial and metric units (e.g. miles to km), but also
scaled to the same basic unit, e.g. m2 to km2.

We want to fulfil these goals, because we want to support queries such as: 'What is
the average capacity of barrier lakes in Bavaria?', or 'What were the average building

costs of Universities in Germany built between 1950 and 1960?', or 'What is the sum
of power in Megawatts of all power plants in the North of Germany?'.

These goals are surprisingly hard to achieve, because also infoboxes are primarily
intended to be read be people, not programs. Some problems, we have to face:

 Equal keys have different representations regarding upper/lower case, abbrevia-
tions or the usage of hyphens.

 Different meanings of keys may have the same texts. E.g. the German 'Land' may
mean 'Country' or 'Federal State' in different articles.

 Some infoboxes are nested or have section headings. Here, a certain key is
meaningless without the knowledge of the section heading. E.g. for universities,
we may not only have 'employees', but also 'academic' and 'non-academic' employ-
ees. Thus, the key 'academic' solely is misleading if we do not take into account the
section heading.

Fig. 3. Example of a Wikipedia infobox

 Even for numeric values, there exist several ways for textual representations. E.g.
we can use blanks or ',' to separate thousands, or we can use scientific representa-
tion such as 3.5.106. Small numbers can be written as words, e.g. 'none', 'zero' or
'one'.

 There exist words or letters that modify the value, e.g. 'million', or 'mio.'. Some
letters, e.g. k or M are considered to be part of the physical unit, but sometimes
lead to confusion. E.g. km2 obviously does not mean thousand m2 but (km)2. The

problem is even worse, as authors faulty write, e.g. 'K' instead of 'k', or m2 instead
of m2.

 Even for a certain unit, there exist multiple spellings. E.g. for monetary costs, we
have '€', 'Euro', 'Eur.', and 'EUR' only for €-values.

There may be textual supplements behind the value, e.g. 'measured 2005' or 'see be-
low'. We have to detect and remove these additions to get the raw unit. However, this
is not trivial, as most physical units also contain letters, similar to the additional
words.

Table 1. Wikipedia properties (selection)

Property Restrictions, Variations Numb/Unit
Height, Depth, Elevation min, max, height above valley bottom, height

difference, depth of reservoirs
m

Area …of city, countries, regions km2

Area …of barrier lakes, estates, parks, places m2

Length, Width …of barrier lakes, buildings m

Volume, Capacity …of barrier lakes, reservoirs m3

Volume per Time Spillway capacity, rate of flow m3/s

Slice Plane, Radius,
Circumference

…of pipes, tunnels m2, m resp.

Date start, stop of commencement, extended, start of
operation, idle since, closed, demolition

date

Costs budget, sales, building costs €

Building Type …of castles, walls, ruins, new buildings -

Power …of power plants, transformers, power storages MW

People architect, builder, planer -

Government, Admini-
stration

mayor, vice, district administrator, chair, director -

Name official name, local name -

Affiliation state, country, region, district, city, quarter, mu-
nicipality

-

Number of parts number of quarters, number of regions integer

Population …of city, region, country integer

Density of population …of city, region, country 1/km2

People counts number of e.g. visitors, employees, members integer

Address town hall, administration, head office -

Keys Official keys such as NUTS, LOCODE, AGS,
IBNR, BIC

resp. format

Vehicle Registration First letters of licence plates resp. format

Dialing Codes First digits of telephone numbers resp. format

To control and structure the recognition of values and units, we provide a table of
keys and their values/units. Table 1 shows some of them, but the table is by far not

complete. We detected 348 different keywords and assigned rules to understand the
values. Besides the physical units for keys, we have lists of all spellings (and typical
misspellings) of units, a list of words for value multipliers and patterns for additional
texts. Moreover we have a list of typical textual expressions that actually indicate a
number, e.g. 'uninhabited' for 'Population: 0'.

4 Evaluation And Sample Scenarios

4.1 Evaluation of Results

We fully implemented and integrated the approach in our HomeRun tool chain. Dur-
ing the import of OSM data a lot of pre-processing is performed [12] and the original
data is enriched. This is required, as original OSM data has several drawbacks re-
garding geometry representation, route planning and classification of objects. This is
an ideal point to query Wikipedia articles for geo objects.

OSM offers its data in compressed XML files – so called planet files. There exist
sub files for continents, countries and regions. The following analysis is based on the
file Germany from two time stamps: Nov. 2015 (1) and Jan. 2017 (2). Table 2 shows
basic numbers.

Table 2. Wikipedia import statistics (OSM file Germany)

Category Count (1) Count (2)

Geo object statistics

OSM objects in the file 43407661 50864433
OSM objects with Wikipedia link 71040 83169
Ratio 0.164% 0.164%

Success/Failures

Successfully processed 56041 64781
Success ratio 78.9% 77.9%
Failed GET/JSON indicated error 3804 4178
Failed parsing Wikitext 11195 14210

Infobox properties

Infobox properties (total count) 383266 430917
Infobox properties with value or unit error 1203 1447
Error ratio 0.31% 0.36%
Avg. infobox properties per geo object 6.84 6.65

A first observation: even tough the amount of total geo objects increased, the ratio

of geo objects with Wikipedia entry remains nearly the same. It is considerably low
with 0.164%. One explanation: most of the geo objects with a reference are areas with

an administrative border such as cities, regions or counties. But these types of objects
only represent a very small amount of geo objects in the OSM database (only 0.05%).

From the amount of geo objects with a Wikipedia link, some references could not
successfully be processed, due to technical errors:

 Some accesses produce low-level errors related to HTTP GET or the JSON result
does not contain a Wikipedia article. Usually the reason for this was an outdated
URL in the OSM entry. Sometimes, the original page was replaced by a hub page
to represent the different meanings of a term.

 A high amount of errors is a result of parsing the Wikitext content. This was be-
cause either the sources were malformed, or the Wikitext parser was not able to
successfully parse the structure. Note that Wikitext may contain embedded HTML,
thus can be very complex – actually the Wikitext parser must also contain an
HTML parser to get the entire structure tree. The amount of parsing can be reduced
using another (esp. more tolerant) parser.

The last section in Table 2 shows statistics about infobox properties. The amount of
read failures is very low (0.31%). Most of them are a result of unrecognized additional
texts in the value descriptions. Most of them cannot easily be solved by automatic
mechanisms, as they significantly affect the interpretation of values. Some examples:

 Texts such as 'in summertime' or 'only department…' limit the value to certain
times, locations or impose other limitations. As a result, the value cannot be used
as is.

 Some texts indicate ranges or open intervals, e.g. 'more than' or 'value1 – value2'.
As the distribution of values inside these intervals is not given, we cannot express
this property by a single value.

The second reason for failures were typos in units (e.g. m2 instead of m3 for volumes).
In principle, most of the problems with properties and values cannot easily be solved
in the current workflow and format for Wikipedia articles, as they conflict the major
goal of Wikipedia: to provide a human-readable article that may contain additional
values and properties that again are interpreted by people.
Table 3 shows the distribution of Wikipedia articles to geo object types. Our classi-
fication of geo objects is a so-called strong classification [14] in contrast to the weak
classification of the original OSM source.

As stated above, most geo objects with a corresponding Wikipedia article are re-
gions with an administrative border e.g., cities. The second type of objects are those
with a touristic or historic meaning such as castles, museums, monuments or touristic
sights. The third type are objects related to traffic and transportation, e.g. railway
stations, canals, routes or roads.

If we look at the degree of objects of a certain type that are covered by Wikipedia
articles, only cities have a sufficient coverage (95.8%). For other object types the
coverage is too low, for e.g., a detailed statistical analysis. However, for certain ob-
jects, an application can benefit from the additional Wikipedia entries.

Table 3. Distribution of Wikipedia Articles to Geo Object Types (file Germany, Jan. 2017)

Geo object
type

Objects
with

Wikipe-
dia article

Total
number

of objects
Ratio
(%)

Geo object
type

Objects
with

Wikipedia
article

Total
number of

objects
Ratio
(%)

City 11053 11543 95.8 Canal 402 12268 3.3

County 400 557 71.8 Chur. Instit. 1179 37640 3.1

Parish 980 1413 69.4 Chapel 208 7708 2.698

Provinc.

Town 1492 2410 61.9

Tower 224 8560 2.617

Castle 1483 4356 34.0 Bike Route 223 10181 2.190

District 3100 9934 31.2 Hike Route 318 20351 1.563

Suburb 1567 8913 17.6 River 4425 383797 1.153

Museum 793 6928 11.4

 School

(basic & sec.) 435 38121 1.141

Railway

Station 731 6986 10.5

 Rail Track

(demount.) 303 26593 1.139

Village 7587 80879 9.4 Park 371 32873 1.129

Theater 211 2358 8.9 Graveyard 350 33290 1.051

Church 1404 18733 7.5

 Wayside

Cross 311 34990 0.889

Protected

Landscape 283 3910 7.2

Rail Track 768 104773 0.733

Archeol. Site 486 7171 6.8 Highway 326 46007 0.709

Touristic Site 3041 52217 5.8 Pedestr. Area 265 38398 0.690

Historic. Site 1874 45999 4.1 Fed. Highway 883 153621 0.575

Monument 413 10267 4.0 Industr. Area 235 43508 0.540

Route 500 13520 3.7 Lake 1083 217195 0.499

Mountain 772 22081 3.5 Bridge 948 278986 0.340

4.2 Sample Scenarios

The imported entries are incorporated into the HomeRun database format and reside
side-by-side with entries originated by Open Street Map. All HomeRun services take
the required data from the HomeRun database in their respective data representation.
Whereas the map rendering service dorenda [13] operates on the HomeRun SQL
database, the route planning service donavio [15] first transfers the road network in an
own format, specialized for high-performance graph algorithms.

The original SQL database now allows executing queries on entries from Wikipe-
dia. E.g. if we want to get the power facility with the highest output power, we simply
enter:

select d_id from domain_properties
where p_id=10411 and double_value=
 (select max(double_value)
 from domain_properties where p_id=10411)

In this query, the property ID 10411 represents the Wikipedia infobox entry 'power
plant capacity in Megawatts'. The result d_id of this query is the geo object's ID.
With this, it is possible to query everything known from this object e.g., its name,
geometry, or further properties. As another example, we query universities with more
than 40000 students:

select d_id from domain_properties
where p_id=11519 and int_value>40000

Here, the property ID 11519 represents 'number of enrolled students'. Note that such
queries are only possible, since the respective entries are taken from Wikipedia –
these properties currently are not available in OSM.

Fig. 4. Smart phone widget that presents a description of the current location

As another example, we extended our HomeRun Reverse Geocoding framework [17].
It provides a purely textual description of the current location hat may, e.g. be read
aloud by text-to-speech services of a smart phone for blind people. In the older ver-
sion, it only provides a small text that summarizes city, address, nearby places or
important sights. With our new approach, we are able also to print the short descrip-
tion from Wikipedia of the most important geo object in the nearer area (Fig. 4).

5 Conclusions

In this paper we presented an approach to import data from Wikipedia to enrich our
geo data inside the HomeRun project. The import mechanism was fully established
and integrated to HomeRun's import tool chain. The general results are encouraging:
we now get a lot of additional properties as processible value with unit, currently not
available in the geo data source. In addition, we get a short description and typical
images of the corresponding object. We can use these entries for different types of
applications and services.

It causes considerable efforts to get processible properties from texts. This is be-
cause Wikipedia texts are not intended for this type of usage. The problem is very
similar to semantic Web approaches: if sources are primarily prepared to be rendered
for users, it is difficult to convert them into machine readable content afterwards. We
solved this problem with a rules-based approach that relies on the strong classifica-
tion of the HomeRun geo data representation. Another solution would be to extend
article structures to store such properties. This, however, would change the overall
goal and article authors have to be convinced, to administrate such structures.

References

1. Auer S., Lehmann J., Hellmann S. 2009: LinkedGeoData: Adding a spatial dimension to
the web of data, The Semantic Web - ISWC 2009, LNCS 5823, 731-746

2. Barrett, D. J., 2008: MediaWiki (Wikipedia and Beyond), O'Reilly
3. Bennett, J., 2010: OpenStreetMap, Packt Publishing
4. Gabrilovich, E., Markovitch, S., 2007, Computing semantic relatedness using Wikipedia-

based explicit semantic analysis, Proceedings of the 20th international joint conference on
Artifical intelligence (IJCAI'07), Hyderabad, India, Jan. 6-12, 2007, 1606-1611

5. Global Administrative Areas, http://gadm.org/
6. Hoffart, J., Suchanek, F. M., Berberich, K., Weikum, G.,YAGO2, 2013: A Spatially and

Temporally Enhanced Knowledge Base from Wikipedia, Artificial Intelligence, 194, 28-61
7. Milne, D., Witten. I. H. 2013: An open-source toolkit for mining Wikipedia, Elsevier,

Artificial Intelligence 194 (2013) 222–239
8. NASA, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER),

http://asterweb.jpl.nasa.gov/
9. Ponzetto, S. P, Strube, M, 2007, Deriving a large scale taxonomy from Wikipedia,

AAAI'07 Proceedings of the 22nd national conference on Artificial intelligence - Volume
2, July 22–26, 2007, Vancouver, British Columbia, 1440-1445

10. Prato, A., Ronchetti, M., 2009, Using Wikipedia as a Reference for Extracting Semantic
Information from a Text, Third International Conference on Advances in Semantic Proc-
essing, 2009. SEMAPRO '09. Oct. 11-16, 2009, Sliema, Malta, 56 - 61

11. Roth, J., 2010: Die HomeRun-Plattform für ortsbezogene Dienste außerhalb des Massen-
marktes, in A. Zipf, S. Lanig, M. Bauer (eds.) 6. GI/ITG KuVS Workshop Location based
services and applications, Heidelberger Geographische Bausteine Heft 18, 2010 (in Ger-
man)

12. Roth, J., 2010: Übernahme von Geodatenbeständen aus Open Street Map und Bereitstel-
lung einer effizienten Zugriffsmöglichkeit für ortsbezogene Dienste, Praxis der Informati-
onsverarbeitung und Kommunikation (PIK), Vol. 13, No. 4, 2010 (in German)

13. Roth, J., 2013: Combining Symbolic and Spatial Exploratory Search – the Homerun Ex-
plorer, Innovative Internet Computing Systems (I2CS), Hagen, June 19-21 2013, Fort-
schritt-Berichte VDI, Reihe 10, Nr. 826, 94-108

14. Roth, J., 2014: From Weak to Strong Geo Object Classification, in Schau V., Eichler G.,
Roth J. (eds): Proc of the 10th Workshop Location-based application and Services (LBAS)
Sept. 16-17 2013, University of Jena, Germany, Logos Verlag Berlin, 3-12

15. Roth, J., 2015: Predicting Route Targets Based on Optimality Considerations, International
Conference on Innovations for Community Services (I4CS), Reims (France) June 4-6,
2014, IEEE xplore, 61-68

16. Roth, J., 2014: Fast Spatio-Symbolic Searching in Huge Geo Databases, Proc. of the 11th
Workshop Location-based application and Services (LBAS), Sept. 18-19, 2014, Telekom
Innovation Laboratories, Darmstadt, Germany, Logos Verlag, 2015

17. Roth, J., 2015: Generating Meaningful Location Descriptions, International Conference on
Innovations for Community Services (I4CS), July 8-10, 2015, Nuremberg (Germany),
IEEE xplore, 30-37

18. Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H,, Studer, R., 2006, Semantic Wikipe-
dia, Proceedings of the 15th international conference on World Wide Web (WWW '06),
May 23–26, 2006, Edinburgh, Scotland, 585-594

19. Wikipedia 2017, MediaWiki action API, https://www.mediawiki.org/wiki/API:Main_page/
en

20. Wu, F., Weld, D. S., 2010, Open Information Extraction using Wikipedia, Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Swe-
den, 11-16 July 2010, 118–127

21. Zesch, T., Müller, C., Gurevych, I., 2008: Extracting Lexical Semantic Knowledge from
Wikipedia and Wiktionary, Proceedings of the Sixth International Conference on Lan-
guage Resources and Evaluation (LREC'08), May 28-30, 2008, Marrakech, Morocco

