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Abstract. Freely available geo data allow a developer to create new types of 
remarkable services related to the user's location. Even though current geo data 
sources have a high coverage and quality, they do not contain all information 
required by new services. This is because geo data sources usually focus on 
object geometries and object types. Important information is often missing. As 
an example: city entries mainly contain the city name and border, but not the 
name of mayor, amount of taxes, year of foundation, number of districts etc. 
These data are available in online encyclopediae such as Wikipedia, but there is 
no obvious approach to relate both sources. Our objective was thus to create an 
automatic import from Wikipedia articles that describe geo objects and extract 
all relevant data. To extract processible values we are able to identify property 
types such dates, money values, powers, heights, sizes etc. This makes it possi-
ble to use these data for further computation, e.g. to search for maxima, build 
averages and sums or to create comparative conditions in queries. 
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1 Introduction 

Geo data form the foundation for different kinds of new services. Many innovative 
services have a relation to locations and are able to identify a user's position, display a 
map of friends or compute driving distances. Often, location-based services are sub-
components of social services or community services. 

Open Street Map (OSM) is a great source for geo data and enables such services. In 
contrast to closed geo services such as Google Maps, Open Street Map applications 
cannot only use pre-defined services to display maps – developers are able to create 
arbitrary new services as they are able to access the underlying structured geo data. 
All geometric information (in particular their vector representation) and non-geomet-
ric information (e.g. names, types, properties and relations to other objects) are avail-
able per object. A service developer can load the freely available geo data and import 
it into own formats appropriate for the respective service. 

The geo data itself, however, still is incomplete for some services. This is because 
OSM data historically was mainly intended for map rendering. Even though con-



tributors can assign properties to every object, many objects mainly contain a name, a 
type, and geometry. 

Other sources may fill this gap. As the counterpart of OSM for non-geographic 
data we may consider Wikipedia: an online encyclopedia and similar to OSM organ-
ized as a community project. Many objects appear in both databases, especially en-
tries about cities, regions and countries, but also about touristic sights. Our main ap-
proach was to identify these data to enrich our geo database. We pursued the follow-
ing goals: 

 We want to integrate the short description of geo objects that appear in Wikipedia 
into our geo object database. 

 We want to take over object properties from Wikipedia to our database. If these 
properties have numerical characteristics, we want to transfer the value and unit in 
a processible representation. In particular, all numerical values are mapped to a 
comparable format that, e.g. abstracts from the physical unit stated the Wikipedia 
article (e.g. miles vs. km). 

 We want to index all Wikipedia texts that are related to geo objects by a text search 
index. Thus, we can use these words in search queries to find objects. 

It was in particular not a goal to take vector geometries from Wikipedia. Even though 
for some objects such information is available in Wikipedia articles, we rely on the 
original OSM source. As a major objective, all these goals must be achieved by 
autonomous mechanisms that work without any user intervention. All potential deci-
sions must be formulated as a-priori rules. Once started, the processing of many mil-
lion geo objects must run in a batch manner. 

In this paper, we present an import mechanism of encyclopedic data to a geo data-
base inside the HomeRun project. 

2 Related Work 

We first distinguish knowledge from data. This distinction is not obvious. We here 
consider knowledge as collection of higher-level structures about an object, e.g. triples 
of subject–predicate–object. In contrast, data are plain values in e.g. columns of a 
database table. This means, extracting data follows a more traditional approach of 
storing objects in a table-oriented manner. Many projects that deal with Wikipedia as 
source try to extract knowledge. YAGO2 [6], e.g., is an ontology-driven project that 
extracts many million triples from Wikipedia, also spatial information. In contrast [1] 
takes OSM as source and transfers geo object information to a knowledge database. 
Even though a knowledge-based approach is more general and flexible, it also has to 
deal with the problem to understand value/unit pairs in a processible manner. In this 
paper, we only discuss the import of data that, however, can be stored in knowledge 
database in later stages. 

Our approach deals with two data sources – geo data on the one hand and encyclo-
paedic facts on the other hand. Combining these data can be executed in two direc-
tions: starting from a geo object we look up the corresponding encyclopedia entry or 



starting from an encyclopedia entry we may look up the corresponding geo object. As 
our goal was to enrich an existing geo database we pursued the first direction. The 
geo data source Open Street Map already has a formalized structure [3]. The most 
important issue is: how we make use of encyclopedic data from Wikipedia to enrich 
existing geo data. This especially means: is there an additional usage scenario for 
Wikipedia articles besides presenting articles to people. 

Former research deals with similar questions. We can identify two major direc-
tions: access and semantic analyses. Different former work addresses the problem of 
accessing articles [7, 21]. For a longer time, the only programmatic way was to im-
port so called Wikipedia dumps. They contain all articles in the Wikitext format [2] 
that forms the basis for rendering articles in HTML. The articles themselves are 
structured in XML, whereas also information about the articles are stored, e.g., a clas-
sification and information about creation and modifications. The goal of access plat-
forms was to get an API to load the deep structure of articles, sections, paragraphs and 
links to other articles. 

Once access to articles is established, the next goal was to conduct a semantic 
analysis. Thus, some platforms perform basic pre-computing to simplify such analy-
ses. E.g. the platform presented in [20] derives a list of triples (noun-phrase relation 
noun-phrase) for every article. The main goal: classify articles and detect relations 
between articles and the respective concepts they describe. Some approaches focus on 
relatedness between concepts and try to answer questions such as 'How related are 
Cat and Dog?'. This is answered using text mining or analysing links between articles 
[7]. In [21] further natural language processing (NLP) techniques are incorporated. 
Further work use Wikipedia meta data, in particular the article classification and links 
between articles to detect semantic relatedness [4, 9, 10]. In [18] the authors suggest 
new types of meta data (typed links and attributes) that should be contributed by arti-
cle authors to support a semantic analysis. 

Even though several existing work deals with automatic analyses of Wikipedia arti-
cles, they mainly either focus on the technical access or to create relations between 
concepts. Incorporating content into other data repositories is not intended. To try to 
access certain properties of entities described in Wikipedia articles and to assign these 
values to (geo) objects is a new approach. 

3 Incorporating Wikipedia Entries to Geo Objects 

The HomeRun project [11] has a long tradition to deal with geo data. HomeRun is a 
platform for low-cost development of location-based services (also small scale ser-
vices). It provides a set of basic services, e.g. import of geo data from public sources, 
map rendering and route planning. HomeRun also supports mobile devices to execute 
applications, even running 'offline', i.e. with all geo data stored on the device. 

The main data source currently is Open Street Map, even though the HomeRun 
import chain also was able to take geo data from other geo data sources, e.g. from 
land survey offices. Merging data with different sources already is an important topic, 
as some information is missing or does not have the desired quality. E.g.: 



 The OSM positions are only stored in 2D without height information, i.e. only 
represent a projection on the Earth's surface. Our import thus adds elevation infor-
mation from NASA [8]. 

 For redundancy reasons, borders of cities, regions, states etc. are in OSM repre-
sented as an unordered collection of lines (so-called relations). If a border is in-
complete, it is not possible to reconstruct a ring. Thus, we additionally load borders 
from another source [5], if borders cannot properly be generated from OSM. 

As a next step, we want to add a further source: Wikipedia. This, however, differs in 
many aspects from existing work: first, information is not geometric as our other 
sources. Second and more important: the content is primarily intended to be read by 
users and it is not prepared for further automatic processing.  

However, some existing features are encouraging: 

 There is a special tag in the OSM object structure that indicates the URL to the 
corresponding Wikipedia article, if available. Thus, it is not required to 'guess' a 
link to an article, e.g. using the object's name. 

 Even though an article is like a book or book chapter structured for human readers, 
there are some parts that in principle can automatically be read (Fig. 1). Foremost: 
for many types of articles there is an infobox that indicates important properties as 
pairs of keys and values. 

 

Fig. 1. Example Wikipedia article and important entries to import 



 Moreover: there is a common understanding in the community, which properties 
are expected for a special type of article – e.g. for cities we have properties such as 
Country, Area, Population and Population Density. 

 A typical article contains a short description of the specified object. Also, this short 
description can be found in the article structure. 

We thus have a good chance to automatically read certain content. Our goal was to 
pre-process content as much as possible. E.g. if a certain property indicates a numeri-
cal value, we want to be able to use this value for computations and statistical analy-
ses later. Thus, our mechanism must be able to understand different number formats 
including physical or other units. Only if numerical interpretation fails, we take the 
original text, but then further computation is disabled. 
 

 

Fig. 2. Stack to access Wikipedia articles 

For text mining among our geo data, we additionally add the article's plain text to our 
symbio-spatial search engine [16]. This engine allows to formulate complex queries 
that contain texts, addresses, object types but also spatial relations (e.g. nearby a 
lake). Textual queries currently only use object names and addresses, but we now are 
able to extend it to index entire articles. As some of these words may not represent the 
actual object, search words from articles get lower priorities compared to object 
names – however they significantly improve the search experience.  

  
3.1 Retrieving Articles and Entries 

Fig. 2 shows the execution stack to get articles and article entries. The approach is 
based on the Wikipedia REST API [19] to get the raw articles' format in Wikitext. 
This API also allows writing back edited articles. Thus, it is possible to develop an 
own authoring environment to read, edit and write Wikipedia articles without the need 
to use the Web-based editing facilities offered by Wikipedia. However, for our ap-
proach, we only need to read articles from Wikipedia. 

It would also be possible to load Wikipedia articles directly using HTTP with the 
respective URL that is, e.g., a result of a browser search. As all URLs are built in a 



straight-forward manner, it is very easy to generate the respective HTTP request. E.g. 
to get the HTML-formed article for the city of Nuremberg, the URL is 

https://en.wikipedia.org/wiki/Nuremberg 

However, the result is formed in HTML, thus underwent an additional step. As 
HTML pages both contain the page structure as well as layout definitions, it is more 
difficult to get the original article structure. Thus, we decided to use the REST API 
that provides the basic article definition. Another benefit: the API allows reading only 
a certain section of an article. Thus, entire processing can focus on interesting parts of 
the article rather then the entire text. We divide the steps to get desired article entries 
as follows (Fig. 2): 
Access: These layers are responsible to transfer the actual data from the Wikipedia 
server to the requesting client: 

 HTTP: The basis forms an HTTP GET request to the Wikipedia server. This re-
quest is always answered, even if a requested article is not available. 

 REST: The request is structured according to the REST API. This means, the URL 
encodes the requested article, but also some parameters, e.g. 

https://en.wikipedia.org/w/api.php 
?action=query&titles=Nuremberg 
&prop=revisions&rvprop=content 

&rvsection=0&format=json 

Parsing: These layers read the actual content and structure: 

 JSON: The lower layer provides JSON decoding of results. It contains information 
about the success of the request. If the request was not successful, JSON variables 
contain a description of the problem. In case of success the variable query: 
pages contains the requested article section. 

 Wikitext: The article structure is then parsed using a Wikitext parser. This is be-
cause of two reasons: first, we need to know the structure to find interesting parts 
of the article, e.g. the infobox or the short description. As these parts are not ex-
plicitly indicated in the article document, we need to detect them using structural 
information. Second: we need the structure to produce plain texts or to extract 
property values in a later stage. 

Extraction: The upper layers access entries inside the article and convert them to the 
required format:  

 Retrieve Entries: Once we know a list of requested entries, we try to detect them in 
the article structure. The type of article passed from the Article Requester helps 
this component to identify significant entries. 

 The loaded entries now undergo a final step that depends on the entry types. Cur-
rently we support plain text, images and pairs of key values with units. 



The result entries are now ready to be stored in the geo object's data. In our case of the 
HomeRun database, geo objects refer to entries in a properties table that holds all non-
geometric characteristics. Until now, this table only contains properties expressed by 
object tags in Open Street Map. Now additional properties of Wikipedia are stored 
there. 

3.2 Retrieving and Processing Entries 

Once the content and structure is parsed, we try to identify interesting entries in the 
article. As Wikipedia stores a plenty of different articles with different structures, this 
is not trivial. The problem is, even if the layout is obvious for human readers, it is not 
obvious for a program to identify, e.g. the short description or infobox. Some exam-
ples of misleading document structures: 

 The short description is not necessarily the first text in the article. Sometimes, e.g., 
there is a text declaring an article is a redirect from another article. 

 Sometimes the first descriptive text section is about which other articles have a 
similar topic. Such a text contains a lot of links to other articles that are meaning-
less in plain texts stored in our database. 

 An infobox is usually stored as Wikitext table. However, also the table of content 
or some images may appear as table. 

As a result, we applied a heuristic approach to identify certain entries in the article. In 
this approach we formulate a set of rules that have to be fulfilled in order to get the 
right entry in the structure tree. Some examples: 

 The short description is a text (not table) that does not contain any file download 
link, image or table. In addition some texts must not appear in the description, e.g. 
'For other uses…see…'. 

 The infobox is either the first, second or last table of the first section with two col-
umns and a set of expected property keywords in the first column (e.g. State, 
Population, Postal codes). 

Wikipedia authors make use of so-called templates. Templates are building blocks of 
Wikitext fragments that provide a basic structuring and layout. To ensure a similar 
look of articles, Wikipedia makes heavily use of templates for, e.g. tables of contents, 
disambiguation references, maps etc. The Wikipedia API reflects the usage of tem-
plates with two modes to get articles: the requester can either load an article still with 
templates or can load an article where all templates are replaced by their respective 
Wikitext fragments. The latter case is called expanded mode. Even though, templates 
would simplify to find important entries in the article, we decided to use the expanded 
mode, because we do not have access to the underlying template definitions and they 
may change without prior notice. 

Once appropriate entries are detected, a type-dependent conversion is applied. For 
plain text entries, all Wikitext tags are removed. As it is also possible for an article 
author to embed HTML into Wikitext, we also have to consider HTML tags. If tags 



enclose references, they have to be removed. Formatting tags are removed at all. Fi-
nally, a conversion of character sets is applied to get the plain text in the desired en-
coding. 

If the desired entry is an image, the image is loaded – usually the embedded images 
are represented by an URL and not embedded in Wikitext. In addition, images un-
dergo a technical transformation regarding size, resolution and image format, to meet 
the requirements for the later usage (e.g. for a smart phone app or for map rendering). 

3.3 Properties of Key/Value/Unit 

Original geo objects imported from Open Street Map already contain properties. Even 
though Open Street Map allows assigning arbitrary property tags to characterize geo 
objects, they typically are used to 

 define an object type (e.g. lake, highway, tree);  
 define object names (for different purposes); 
 control rendering of maps (e.g. tell if an object should not be painted at all); 
 provide information for route planning (e.g. speed limits); 
 provide additional information to the object's geometry; 
 offer additional information about the object, e.g. opening hours, type of restaurant, 

parking prices. 

Very often, information of the latter case is missing. This is because Open Street Map 
mainly is used to draw maps and maybe to support route planning – the origin of 
Open Street Map was to collect information about streets. This is also one reason why 
classification of geo objects from Open Street Map is very difficult [14]. 

Wikipedia on the other hand provides a lot of additional information, not stored in 
Open Street Map, e.g. population, important people, object classification, organisa-
tion, history, usage or costs. Even though the actual object geometry is exactly de-
fined by OSM, additional geometric information can be read from Wikipedia, e.g. 
volumes or surface areas of barrier lakes. 

The respective information may be spread over an article, thus not within reach for 
automatic processing. Fortunately, infoboxes as shown in Fig. 3 indicate the most 
important properties in tables of keys and values. 

A major goal is not only to copy the pairs of key/value from the table, but to proc-
ess values in such a way to enable further processing. This means: 

 Keys must be mapped to a representation that allows to check for equality. 
 Numbers must be transferred from their textual representation to native numbers. 
 Units must be recognized and all properties of the same kind have to be mapped to 

the same unit in order to be comparable and to create sums of property values. E.g., 
units are converted between Imperial and metric units (e.g. miles to km), but also 
scaled to the same basic unit, e.g. m2 to km2. 

We want to fulfil these goals, because we want to support queries such as: 'What is 
the average capacity of barrier lakes in Bavaria?', or 'What were the average building 



costs of Universities in Germany built between 1950 and 1960?', or 'What is the sum 
of power in Megawatts of all power plants in the North of Germany?'. 

These goals are surprisingly hard to achieve, because also infoboxes are primarily 
intended to be read be people, not programs. Some problems, we have to face: 

 Equal keys have different representations regarding upper/lower case, abbrevia-
tions or the usage of hyphens. 

 Different meanings of keys may have the same texts. E.g. the German 'Land' may 
mean 'Country' or 'Federal State' in different articles. 

 Some infoboxes are nested or have section headings. Here, a certain key is 
meaningless without the knowledge of the section heading. E.g. for universities, 
we may not only have 'employees', but also 'academic' and 'non-academic' employ-
ees. Thus, the key 'academic' solely is misleading if we do not take into account the 
section heading. 

 

Fig. 3. Example of a Wikipedia infobox 

 Even for numeric values, there exist several ways for textual representations. E.g. 
we can use blanks or ',' to separate thousands, or we can use scientific representa-
tion such as 3.5.106. Small numbers can be written as words, e.g. 'none', 'zero' or 
'one'. 

 There exist words or letters that modify the value, e.g. 'million', or 'mio.'. Some 
letters, e.g. k or M are considered to be part of the physical unit, but sometimes 
lead to confusion. E.g. km2 obviously does not mean thousand m2 but (km)2. The 



problem is even worse, as authors faulty write, e.g. 'K' instead of 'k', or m2 instead 
of m2. 

 Even for a certain unit, there exist multiple spellings. E.g. for monetary costs, we 
have '€', 'Euro', 'Eur.', and 'EUR' only for €-values. 

There may be textual supplements behind the value, e.g. 'measured 2005' or 'see be-
low'. We have to detect and remove these additions to get the raw unit. However, this 
is not trivial, as most physical units also contain letters, similar to the additional 
words. 

Table 1. Wikipedia properties (selection) 

Property Restrictions, Variations Numb/Unit 
Height, Depth, Elevation min, max, height above valley bottom, height 

difference, depth of reservoirs  
m 

Area …of city, countries, regions km2 

Area …of barrier lakes, estates, parks, places m2 

Length, Width …of barrier lakes, buildings m 

Volume, Capacity …of barrier lakes, reservoirs m3 

Volume per Time Spillway capacity, rate of flow m3/s 

Slice Plane, Radius, 
Circumference 

…of pipes, tunnels m2, m resp. 

Date start, stop of commencement, extended, start of 
operation, idle since, closed, demolition 

date 

Costs budget, sales, building costs  € 

Building Type …of castles, walls, ruins, new buildings - 

Power …of power plants, transformers, power storages MW 

People architect, builder, planer - 

Government, Admini-
stration 

mayor, vice, district administrator, chair, director - 

Name official name, local name - 

Affiliation state, country, region, district, city, quarter, mu-
nicipality 

- 

Number of parts number of quarters, number of regions integer 

Population …of city, region, country integer 

Density of population …of city, region, country 1/km2 

People counts number of e.g. visitors, employees, members integer 

Address town hall, administration, head office - 

Keys Official keys such as NUTS, LOCODE, AGS, 
IBNR, BIC 

resp. format 

Vehicle Registration First letters of licence plates resp. format 

Dialing Codes First digits of telephone numbers resp. format 
 

To control and structure the recognition of values and units, we provide a table of 
keys and their values/units. Table 1 shows some of them, but the table is by far not 



complete. We detected 348 different keywords and assigned rules to understand the 
values. Besides the physical units for keys, we have lists of all spellings (and typical 
misspellings) of units, a list of words for value multipliers and patterns for additional 
texts. Moreover we have a list of typical textual expressions that actually indicate a 
number, e.g. 'uninhabited' for 'Population: 0'. 

4 Evaluation And Sample Scenarios 

4.1 Evaluation of Results 

We fully implemented and integrated the approach in our HomeRun tool chain. Dur-
ing the import of OSM data a lot of pre-processing is performed [12] and the original 
data is enriched. This is required, as original OSM data has several drawbacks re-
garding geometry representation, route planning and classification of objects. This is 
an ideal point to query Wikipedia articles for geo objects. 

OSM offers its data in compressed XML files – so called planet files. There exist 
sub files for continents, countries and regions. The following analysis is based on the 
file Germany from two time stamps: Nov. 2015 (1) and Jan. 2017 (2). Table 2 shows 
basic numbers. 

Table 2. Wikipedia import statistics (OSM file Germany) 

Category Count (1) Count (2) 
 
Geo object statistics 

  

OSM objects in the file 43407661 50864433 
OSM objects with Wikipedia link 71040 83169 
Ratio 0.164% 0.164% 
 
Success/Failures 

  

Successfully processed 56041 64781 
Success ratio 78.9% 77.9% 
Failed GET/JSON indicated error 3804 4178 
Failed parsing Wikitext 11195 14210 
 
Infobox properties 

  

Infobox properties (total count) 383266 430917 
Infobox properties with value or unit error 1203 1447 
Error ratio 0.31% 0.36% 
Avg. infobox properties per geo object 6.84 6.65 

 
A first observation: even tough the amount of total geo objects increased, the ratio 

of geo objects with Wikipedia entry remains nearly the same. It is considerably low 
with 0.164%. One explanation: most of the geo objects with a reference are areas with 



an administrative border such as cities, regions or counties. But these types of objects 
only represent a very small amount of geo objects in the OSM database (only 0.05%). 

From the amount of geo objects with a Wikipedia link, some references could not 
successfully be processed, due to technical errors: 

 Some accesses produce low-level errors related to HTTP GET or the JSON result 
does not contain a Wikipedia article. Usually the reason for this was an outdated 
URL in the OSM entry. Sometimes, the original page was replaced by a hub page 
to represent the different meanings of a term.  

 A high amount of errors is a result of parsing the Wikitext content. This was be-
cause either the sources were malformed, or the Wikitext parser was not able to 
successfully parse the structure. Note that Wikitext may contain embedded HTML, 
thus can be very complex – actually the Wikitext parser must also contain an 
HTML parser to get the entire structure tree. The amount of parsing can be reduced 
using another (esp. more tolerant) parser. 

The last section in Table 2 shows statistics about infobox properties. The amount of 
read failures is very low (0.31%). Most of them are a result of unrecognized additional 
texts in the value descriptions. Most of them cannot easily be solved by automatic 
mechanisms, as they significantly affect the interpretation of values. Some examples: 

 Texts such as 'in summertime' or 'only department…' limit the value to certain 
times, locations or impose other limitations. As a result, the value cannot be used 
as is. 

 Some texts indicate ranges or open intervals, e.g. 'more than' or 'value1 – value2'. 
As the distribution of values inside these intervals is not given, we cannot express 
this property by a single value. 

The second reason for failures were typos in units (e.g. m2 instead of m3 for volumes). 
In principle, most of the problems with properties and values cannot easily be solved 
in the current workflow and format for Wikipedia articles, as they conflict the major 
goal of Wikipedia: to provide a human-readable article that may contain additional 
values and properties that again are interpreted by people. 
Table 3 shows the distribution of Wikipedia articles to geo object types. Our classi-
fication of geo objects is a so-called strong classification [14] in contrast to the weak 
classification of the original OSM source. 

As stated above, most geo objects with a corresponding Wikipedia article are re-
gions with an administrative border e.g., cities. The second type of objects are those 
with a touristic or historic meaning such as castles, museums, monuments or touristic 
sights. The third type are objects related to traffic and transportation, e.g. railway 
stations, canals, routes or roads. 

If we look at the degree of objects of a certain type that are covered by Wikipedia 
articles, only cities have a sufficient coverage (95.8%). For other object types the 
coverage is too low, for e.g., a detailed statistical analysis. However, for certain ob-
jects, an application can benefit from the additional Wikipedia entries. 

 



 

Table 3. Distribution of Wikipedia Articles to Geo Object Types (file Germany, Jan. 2017) 

Geo object 
type 

Objects 
with 

Wikipe-
dia article 

Total 
number 

of objects
Ratio 
(%) 

 

Geo object 
type 

Objects 
with 

Wikipedia 
article 

Total 
number of 

objects 
Ratio 
(%) 

City 11053 11543 95.8  Canal 402 12268 3.3 

County 400 557 71.8  Chur. Instit. 1179 37640 3.1 

Parish 980 1413 69.4  Chapel 208 7708 2.698 

Provinc. 

Town 1492 2410 61.9

 

Tower 224 8560 2.617 

Castle 1483 4356 34.0  Bike Route 223 10181 2.190 

District 3100 9934 31.2  Hike Route 318 20351 1.563 

Suburb 1567 8913 17.6  River 4425 383797 1.153 

Museum 793 6928 11.4

 School  

(basic & sec.) 435 38121 1.141 

Railway 

Station 731 6986 10.5

 Rail Track 

(demount.) 303 26593 1.139 

Village 7587 80879 9.4  Park 371 32873 1.129 

Theater 211 2358 8.9  Graveyard 350 33290 1.051 

Church 1404 18733 7.5

 Wayside 

Cross 311 34990 0.889 

Protected 

Landscape 283 3910 7.2

 

Rail Track 768 104773 0.733 

Archeol. Site 486 7171 6.8  Highway 326 46007 0.709 

Touristic Site 3041 52217 5.8  Pedestr. Area 265 38398 0.690 

Historic. Site 1874 45999 4.1  Fed. Highway 883 153621 0.575 

Monument 413 10267 4.0  Industr. Area 235 43508 0.540 

Route 500 13520 3.7  Lake 1083 217195 0.499 

Mountain 772 22081 3.5  Bridge 948 278986 0.340 

4.2 Sample Scenarios 

The imported entries are incorporated into the HomeRun database format and reside 
side-by-side with entries originated by Open Street Map. All HomeRun services take 
the required data from the HomeRun database in their respective data representation. 
Whereas the map rendering service dorenda [13] operates on the HomeRun SQL 
database, the route planning service donavio [15] first transfers the road network in an 
own format, specialized for high-performance graph algorithms. 

The original SQL database now allows executing queries on entries from Wikipe-
dia. E.g. if we want to get the power facility with the highest output power, we simply 
enter: 



select d_id from domain_properties  
where p_id=10411 and double_value= 
   (select max(double_value)  
    from domain_properties where p_id=10411) 

In this query, the property ID 10411 represents the Wikipedia infobox entry 'power 
plant capacity in Megawatts'. The result d_id of this query is the geo object's ID. 
With this, it is possible to query everything known from this object e.g., its name, 
geometry, or further properties. As another example, we query universities with more 
than 40000 students: 

select d_id from domain_properties  
where p_id=11519 and int_value>40000 

Here, the property ID 11519 represents 'number of enrolled students'. Note that such 
queries are only possible, since the respective entries are taken from Wikipedia – 
these properties currently are not available in OSM. 

 

Fig. 4. Smart phone widget that presents a description of the current location 



As another example, we extended our HomeRun Reverse Geocoding framework [17]. 
It provides a purely textual description of the current location hat may, e.g. be read 
aloud by text-to-speech services of a smart phone for blind people. In the older ver-
sion, it only provides a small text that summarizes city, address, nearby places or 
important sights. With our new approach, we are able also to print the short descrip-
tion from Wikipedia of the most important geo object in the nearer area (Fig. 4). 

5 Conclusions 

In this paper we presented an approach to import data from Wikipedia to enrich our 
geo data inside the HomeRun project. The import mechanism was fully established 
and integrated to HomeRun's import tool chain. The general results are encouraging: 
we now get a lot of additional properties as processible value with unit, currently not 
available in the geo data source. In addition, we get a short description and typical 
images of the corresponding object. We can use these entries for different types of 
applications and services. 

It causes considerable efforts to get processible properties from texts. This is be-
cause Wikipedia texts are not intended for this type of usage. The problem is very 
similar to semantic Web approaches: if sources are primarily prepared to be rendered 
for users, it is difficult to convert them into machine readable content afterwards. We 
solved this problem with a rules-based approach that relies on the strong classifica-
tion of the HomeRun geo data representation. Another solution would be to extend 
article structures to store such properties. This, however, would change the overall 
goal and article authors have to be convinced, to administrate such structures. 
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