

Mobility- and Topology-aware Peer-to-Peer Infrastructures for Location Based Services

Jochen Schiller, Rolf Winter

Computer Systems & Telematics Freie Universität Berlin [schiller, winter]@inf.fu-berlin.de

New Topics for LBS

- Powerful mobile devices
- Short range communication
- Ad-hoc applications, spontaneous interaction
- Provider/operator independent applications
- Light-weight applications
- Relative locality sufficient for many applications
- Social aspect might be important
- Low cost info provider
- Examples:
 - tourist information system
 - ad-hoc gaming
 - friend finder

ScatterWeb Nodes

- Embedded Sensor Board
 - Luminosity sensor
 - Noise detection
 - Vibration sensor
 - PIR movement detection
 - Microphone/speaker
 - IR sender/receiver
 - Precise timing
 - Communication using 868 MHz radio transceiver
 - Simple programming (C interface)

Further information: www.scatterweb.net

Embedded Sensor Board

Modular Sensor Node

KuVS -LBS 2004

tp://www.inf.fu-berlin.de/inst/ag-tech/

Interoperation between sensor network and web server

Communication Paradigms

Classical approach (centralized): Client-Server:

- Single point of failure
- Bottleneck
- Administration
 - \rightarrow Cost

Business model support

Emerging approach (decentralized): **Peer-to-Peer:**

- Self-organizing
- Self-configuring
- Robust against failure
- Load distribution

Peer-to-Peer (P2P) Paradigm

- Overlay network of "equal" peers
- Self-organizing
- No central server and/or administration
- Peers can "directly" talk to each other (on the overlay)

Issues:

- Peer discovery
- Data dissemination and retrieval
- Discrepancy between overlay topology and underlying topology
- Mobility
 - \rightarrow Topology changes over time

P2P substrate's main task

Problematic for LBSs without common localization means

Common Localization

Localization with the help of...

• GPS

 Cell information (Mobile phone)

 Localized short-range radios (e.g. DriveBy InfoFueling)

Structured Peer-to-Peer overlay (DHT based)

Desired properties:

- Topological localization (overlay and underlay)
- Relative location to others

Advantages:

- No extra hardware is required on the client side (e.g. GPS receiver)
- No infrastructure is required (satellite system, access points)

Disadvantages:

Absolute localization is not possible

Problem of current approaches : Overlay does not reflect the physical topology

 \rightarrow Not suitable for LBS

- Each participating node is assigned a hash ID (e.g. hash on node's IP address, etc.)
- Every object also has a hash ID in the same ID space
- Object is stored on node whose ID is closest to object's ID
- Each node keeps track of only a certain number (typically O(log n)) of other nodes
- All DHTs provide one basic operation: lookup(key) → node
- Key lookup in O(log n) overlay hops

Overlay vs. Physical Topology (Overlay stretch)

IBERTAS

veritas iustitia

KuVS -LBS 2004 11/25

There is no relation between the overlay ID and the underlying topology

1.

2.

Lookup processes can have an highly inefficient overlay stretch

Dynamo has two different approaches:

A. Random Landmarking

Landmark measurement to temporary landmarks (landmark keys)

Assignment of own ID according to the closest landmark

<not resilient against node mobility>

- B. Closest Neighbor Prefix Assignment
- Neighbor detection phase (part of Pastry's join procedure)
- Assignment of own ID according to closest neighbor

Mechanisms

Random Landmarking:

- "Landmark gravitation range" used to distribute ID equally during bootstrap
- Intelligent landmark caching
- Adaptive landmark re-measurement periods in mobile networks
- Fine-grained \rightarrow mobility-resilient

Closest Neighbor Prefix Assignment:

- Gravitation range similar to RLM during bootstrap
- •More coarse-grained \rightarrow less overhead

 The prefix corresponds to a node's location. In other words nodes with a common overlay ID prefix are close to each other.

- The rest of the overlay ID could
 - ... be further split up and associated with a meaning (semantics, categorization, profiling).
 - ... represent an object (files, profiles, applications, resources...).

Topology Map

Pastry

DynaMO

Equal symbols and shades represent equal overlay ID prefixes

Mobility I: Overlay stretch

Mobility II: Overhead

KuVS -LBS 2004

Mobility III: Topology

http://www.inf.fu-berlin.de/inst/ag-tech/

- Applications were locality plays an important role: (Relative or fuzzy)
 Location Based Services. "Is anyone near me who…?" not "Does anyone currently on highway 10 know…?"
- Applications with high lookup rates: Monitoring applications (certain sensornetworks etc.)
- Applications which require a higher QoS, since paths in the physical network are shorter compared to Pastry
- Applications which mainly interact with their own (common prefix) cluster nodes and only infrequently with nodes of other clusters (applications with social implication: mobile gaming etc.)

Conclusion

- New features of mobile devices enable new LBS infrastructures
 - Ad-hoc, short-range communication, peer-to-peer
 - Low-cost, flexible, robust
- Peer-to-Peer infrastructures have to take into account
 - physical topology
 - node mobility
- DynaMO provides
 - ID clustering resulting in zones (locality)
 - Strong mobility & degression resilience
 - Less communication overhead compared to current approaches
 - Lightweight implementation

Future Work

Short-term:

 Implementation of DynaMO on Windows Mobile 2003 PDAs and ESB/2 sensorboards (www.scatterweb.net)

Long-term:

- Designing a component which maps cooperation onto communication patterns under QoS constraints
- Load balancing strategies
- Application of multicast, concast, anycast etc.
- Location awareness

- R. Winter, T. Zahn, J. Schiller, Topology-Aware Overlay Construction in Dynamic Networks
- Proc. of 3rd International Conference on Networking, Guadeloupe, France (DOM), 2004
- Winter, R.; Zahn, T.; Schiller, J., Random Landmarking in Mobile, Topology-Aware Peer-to-Peer Networks,
- 10th International Workshop on Future Trends in Distributed Computing Systems, China, 2004

 Winter, R., Zahn, T., Schiller, J., DynaMO: Applying Topological Locality to the Construction of Dynamic, Mobility-Aware Overlays,
 Technical Report B 03-04, Freie Universität Berlin, February 2004

http://www.inf.fu-berlin.de/inst/ag-tech/

