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Bounding Boxes

Bounding boxes approximate
arbitrary 2D geometries
 computer graphics
 simulation, games
 spatial indexes

Here 
 axis-aligned bounding boxes

Benefits
 Easy to compute in O(n)
 Simple, quick a-priori test for geometric conditions 

(e.g. 'is inside', 'overlaps') in O(1)
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Idea: Double Bounding Boxes

False hits require exact (costly) geometric 
checks. Our idea:
 We use two bounding boxes to 

better approximate a shape
 They may overlap
 They should have a minimal area

 Also O(1) geometric a-priori checks

 Double Bounding Boxes, DBB

(we call the traditional one the
Single Bounding Box, SBB)

SBB

DBB
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DBBs

DBBs approximate a shape much better 
(fewer false hits)
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Compute DBBs

How to compute minimal DBBs?
 We look at the inverse areas, the void rects

 A void rect's corner resides on a corner profile

 We 'only' have to compute 4 corner profiles 
and select maximum void rects.
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DBB cases

A: 1 void rect C: 2 void rects 
(sideways aligned)

B: 2 void rects
(diag., independent)

E: 4 void rectsD: 2 void rects 
(diagonally aligned)

Cases A-D can be rotated  total 15 sub-cases
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Compute DBBs

 Some cases have certain conditions. 
E.g. case E: all
4 void rects have
to be aligned

 We compute the 
maximum area 
of all 15 sub-cases

 The overall maximum 
of the 15 sub-cases
represents the minimal 
DBB

>0
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Exact DBBs

There exists an algorithm that computes the 
minimal DBB:
 Publication: 

Jörg Roth: The Approximation of Two-Dimensional Spatial 
Objects by Two Bounding Rectangles
Spatial Cognition & Computation: An Interdisciplinary 
Journal, Vol. 11, Issue 2, 2011, ISSN 1387-5868, 129-152

 The algorithm computes the theoretical minimum

 Requires O(n · log n) steps for n geometry points

 Reason: computing the corner profiles needs a 
kind of sorting
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Quick DBBs

Our new idea:

 We replace the O(n · log n) algorithm to compute 
maximum void rects by an O(n) approximation

 The rest of the algorithm remains unchanged, i.e.

iterate through all 15 sub-cases {

generate the maximum void rectangle(s) that fulfil(s)
the conditions related to this case;

sum up the void rectangle areas;

if (sum of areas > area of the previous best solution)

store as the new best solution;

}

return the best solution;
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Quick DBBs

Approximation for void rects:
 We do not consider maximum void rects, but only 

sub-maxima that have the SBB's aspect ratio, i.e.

 Not the maximum, but 
easy to compute

 Note: with other aspect 
ratios the void rects
often do not construct 
DBBs
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Quick DBBs

Examples:
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Quick DBBs

Quick void rect construction:
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Runtime measurements

Comparison QDDB runtime to exact DBB
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QDBB worst case

Worst case considerations:

 Area ratio between QDBB and exact DBB:

 Boundary value is 2, i.e. in worst case the QDBB 
area has twice the size of the theoretical value 
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Measurements with real data

 100,000 queries

 overlap test of random geometries with 
real geo data (Open Street Map)
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Measurements with real data
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Measurements with real data

The difference between QDBB and exact DBB is 
small in reality:
 QDDB produce only 10.9% more false hits than 

the theoretically optimal DBB

But:
 The SBB produces 2.03 times more false hits 

than the QDBB!

 This means: SBBs produce twice as much 
(costly) exact geometric checks than QDBBs
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Summary

 DBBs are more suitable than SBBs to 
approximate real geometries

 The quick approximation only requires O(n) steps

 Worst case: 2 times larger areas

 Real data: nearly as good as the theoretical 
optimum
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Contact

Jörg Roth

Univ. of Applied Sciences Nuremberg
Joerg.Roth@Ohm-hochschule.de

http://www.wireless-earth.org
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